If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-128=0
a = 9; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·9·(-128)
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{2}}{2*9}=\frac{0-48\sqrt{2}}{18} =-\frac{48\sqrt{2}}{18} =-\frac{8\sqrt{2}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{2}}{2*9}=\frac{0+48\sqrt{2}}{18} =\frac{48\sqrt{2}}{18} =\frac{8\sqrt{2}}{3} $
| Y²=-(2y-35) | | 3(1+3x)=2x | | 8m-6-14m=-42 | | 4x+22=x-10 | | |4x+5|=10 | | 16(x+7)=24 | | 1+2k=10+k | | 6v2=10-11v | | 2a+12a=-28 | | 6+76x=4+332x | | -10+9w=5+4w | | 1,000=y+10 | | 6p2=6 | | -4(x+10)=8 | | 7p=567 | | 9+q+6q=3q-7 | | 1/4(12x+16)=8 | | 4/5x+7=72 | | -31.50m-27=3 | | s+239=957 | | 4x2=-3x+22 | | 6x+76=4x+332 | | 1/4(12x13)=18 | | V=1/2b | | 9=u/25 | | -9.4b+4.01=-9.3b+4.59 | | 4m-9=37 | | m2-7=-6m | | 25x²+10=46 | | 930=30j | | 3y+17=10 | | -4k-7=-31 |